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Breather lattice and its stabilization for the modified Korteweg–de Vries equation
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We obtain an exact solution for the breather lattice solution of the modified Korteweg–de Vries equation.
Numerical simulation of the breather lattice demonstrates its instability due to the breather-breather interaction.
However, such multibreather structures can be stabilized through the concurrent application of ac driving and
viscous damping terms.
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I. INTRODUCTION

There are many physical systems where the 111 modified
Korteweg–de Vries~MKdV ! equation @1,2# appears, e.g.
phonons in anharmonic lattices@3#, ion acoustic solitons@4#,
and van Alfvén waves in collisionless plasma@5#, Schottky
barrier transmission lines@6# as well as in the models o
traffic congestion@7#. A subclass of hyperbolic surfaces@8#,
slag-metallic bath interfaces@9#, curve motion@10#, mean-
dering ocean jets@11#, and other models in fluid mechanic
@12# are also related to the MKdV equation. Furthermore
has been shown that the dynamics of thin elastic rods
also be reduced to the MKdV equation@13#. This equation is
also of special interest due to its integrability in the cont
of nonlinear soliton bearing systems@1,2#. From a physical
perspective, it is therefore important to examine no
classes of solutions of such partial differential equations
their potential relevance in this diverse class of applicatio

A particularly interesting type of solution is the so calle
breather lattice solution. Breathers are spatially localized
temporally periodic solutions which are of significant re
evance to localization-type phenomena in optics, conden
matter physics, and biophysics. For a representative se
reviews of the continuously increasing volume of work
this area, see, e.g., Ref.@14#. As can be seen in these inve
tigations, typically analytical expressions for breather-ty
solutions are unavailable and such solutions have to
traced by means of numerical methods. However, in so
cases and particularly for integrable models, such soluti
may exist in a closed form. One such example is the brea
lattice solution of the sine-Gordon equation, which was p
sented in explicit analytic form in Ref.@15#. Such a solution,
albeit unstable, is very important because it can be stabil
in more realistic contexts of driving and damping. In ad
tion, it is useful in extracting the asymptotic breathe
breather~exponential! interaction by means of energy met
ods as demonstrated in Ref.@16#.

It is naturally worthwhile to enquire whether similar e
tended pattern solutions are available in the closed form
other models. Of particular interest are models of the MK
~and KdV! variety not only due to an abundance of the c
responding applications but also due to the fundame
differences of such integrable models with nonlinear Kle
Gordon equations, such as sine-Gordon. The latter have
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entz invariance that permits the breathers to be either st
ing or traveling. In the former case, such invariances
absent and breathers can only be sustained in a trave
wave form. Furthermore, the dissipation-type effects are
troduced by very different operators in the two cases. Th
for reasons of physical applicability and mathematical tr
tability, it is very important to identify similar solutions o
the breather lattice type in models of the KdV family, such
the MKdV and examine their stability. This is the main o
jective of the present work.

Our presentation is structured as follows. In Sec. II
present the explicit MKdV breather lattice solution in term
of elliptic functions, retrieve the well-known single breath
limit and analyze the algebraic and physical conditions
the existence of such a solution. In Sec. III we numerica
study the stability of the unperturbed MKdV breather latti
and display its instability. In Sec. IV, we demonstrate th
such a solution can be stabilized by viscous effects w
combined with appropriate driving to sustain the breathe
and finally in Sec. V we summarize our findings and pres
our conclusions.

II. BREATHER LATTICE SOLUTION

The modified Korteweg–de Vries equation for a fie
u(x,t)

ut16u2ux1uxxx50 ~1!

can be transformed into

~11f2!~f t1fxxx!16fx~fx
22ffxx!50, ~2!

where

u5vx , f5tan~v/2!, and v→0 as uxu→`. ~3!

The single breather solution of MKdV is known to be@1#

u~x,t !522
]

]x
tan21S c sin~ax1bt1a0!

a cosh~cx1dt1c0! D , ~4!

with

b5a~a223c2!, d5c~3a22c2!, ~5!

anda0, andc0 are arbitrary constants.
©2003 The American Physical Society01-1
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FIG. 1. ~Color! Pictorial repre-
sentation of the exact MKdV
breather lattice solution in a
space-time (x,t) contour plot for
c51, m50.5 ~top left panel!. The
top right panel shows the time
evolution of the same solution
under the dynamics of Eq.~13!
with Dt50.0005 andh'0.0927.
These contour plots have dimen
sionless units forx andt. The bot-
tom panel shows the spatial pro
files u(x,t0) of the solution for
various timest0 before and after
the instability develops.
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Let us now try to obtain the breather lattice solution of t
MKdV equation. To that end, we start with the ansatz

u~x,t !522~]/]x!tan21f~x,t !, ~6!

with

f~x,t !5asn~ax1bt1a0 ,k!dn~cx1dt1c0 ,m!, ~7!

where sn(x,k) and dn(x,m) are Jacobi elliptic functions with
modulusk andm, respectively. This ansatz is inspired by t
derivative relationship between a single breather solution
the sine-Gordon equation and that of MKdV@Eq. ~4!# as well
as by the functional similarity of the sine-Gordon breath
lattice solution@15,16#. Substituting the ansatz~7! in Eq. ~2!
and upon lengthy algebraic manipulations, we find that
~7! is indeed the MKdV breather lattice solution, provide
that

a4k5c4~12m!, a52~c/a!, ~8!

b5a@a2~11k!23c2~22m!#,

d5c@3a2~11k!2~22m!c2#. ~9!

As expected, in the limitm→1, k→0, the breather lattice
solution ~7! reduces to the single breather solution~4! and
the relations betweenc and d as well as betweena and b
reduce to those given by Eq.~5!.

On physical grounds~i.e., to have solutions with a definit
spatial periodicity!, it is natural to demand that the periods
the sn(x,k) and dn(x,m) functions must be spatially com
mensurate, i.e., in addition to conditions~8! and~9!, we must
also demand that@17#

4K~k!/a52K~m!/c, ~10!

whereK(k) is the complete elliptic integral of the first kind
Note, however, that since the MKdV breather is always m
04770
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ing, it need not have temporal commensurability. Combin
conditions~8! and ~10! yields

16kK4~k!5~12m!K4~m!, ~11!

implying thereby thatm andk are not independent. For ex
ample, note that as expected withm→1, k→0 the breather
lattice solution reduces to the single breather solution~4!.
However, asm→0, dn(x,m)51 and then it is easily shown
that an exact~nonlinear! traveling wave solution is given by

f~x,t !5Aksn~ax1a3t@11k26Ak#1a0 ,k!. ~12!

Summarizing, since there are four relations among the
parametersa,b,c,d,k,m, we have obtained a two-paramet
family of breather lattice solutions. A plot of the~exact!
breather lattice of Eq.~6! for m50.5, c51 is given in the
top left panel of Fig. 1.

III. NUMERICAL METHODS AND EVOLUTION
OF THE BREATHER LATTICE

Based on the breather lattice simulations for the si
Gordon case@16# it may be natural to expect that the MKdV
breather lattice configuration is also unstable. In the num
cal simulation of the MKdV problem, we have found that th
direct center-difference discretization does a poor job in
equately following the MKdV equation~and in conserving
the corresponding integrals of motion!. While one can also
use the integrable scheme of Ablowitz-Ladik~see, e.g., Refs
@2,18,19# and references therein!, we have followed a differ-
ent path here in spatially discretizing the partial different
equation and following the integrable discretization sche
of Ref. @20# for KdV and adapting it to the case of th
MKdV. In particular, the spatially discrete version of ou
equation reads~with lattice spacingh)
1-2
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FIG. 2. ~Color! Same as in the
top panels of Fig. 1, but now in
the top left panelc50.5 andm
50.5, in the top right panelc
50.4546 andm50.25, and in the
bottom panel c50.25 and m
50.5. In the latter case the snap
shot of t5150 is also shown to
indicate the onset of the instabil
ity. The contour plots have dimen
sionless units forx and t.
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1

3h

3@un11
2 ~un121un111un!2un21

2 ~un1un211un22!#.

~13!

The time integration has been performed by means o
fourth order Runge-Kutta scheme. We used periodic bou
ary conditions and the initial condition contained an ex
breather lattice configuration, matching the periodicity of t
finite domain. Hence, the only perturbation to the exact
lution came from the numerical discretization of the pro
lem. It should also be noted that in the results mention
below, the accuracy of the numerical method was monito
by probing the conservation of two quantities,(nun and
(nun

2 , which emulate the discrete analogs of the mass
the momentum, respectively. Typically the former is co
served~at worst! to 1 part in 107, while the latter to 1 part in
103.
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We found that, as can be seen in the top right panel of F
1, the numerical discretization perturbation grows and ev
tually destroys the breather lattice configuration in all t
cases considered. Various snapshots of the solutionu(x,t)
are depicted in the bottom panel of Fig. 1.

To further understand the instability, we performed ru
for different values of the two relevant parameters of t
solution, namely,c andm. Three typical cases are shown
Fig. 2. The particular numerical experiments are chosen
illustrate the characteristic dependences of the instability.
expect from the experience of other nonlinear wave eq
tions with interacting breather structure~see, e.g., Ref.@16#
for sine-Gordon and Ref.@21# for nonlinear Schro¨dinger type
models! that the instability is caused by the interaction b
tween the breathers, which is exponential in their separat
From Eq.~10!, the separation between the breathers is giv
by S52K(m)/c. The top panels of Fig. 2 correspond to tw
cases with differentc and m but with the sameS[S0.
Clearly the instability develops at very similar times a
. These

.

FIG. 3. ~Color! The driven-damped MKdV stabilization of the breather lattice withc51, m50.5, b5F055. The left panel shows the
space-time contour plot. The right panel top subplot shows a detail of the left plot to indicate the stabilization of the configuration
contour plots have dimensionless units forx andt. The bottom left subplot shows the spatial profile of the solution att560, while the bottom
right subplot depicts the relaxational time evolution of a global property such as the discrete analog of the continuum momentum
1-3
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verifies the dependence of the growth rate on the in
breather separationS0. The bottom panel shows a case wi
S52S0. Note that these typical results have been verified
additional numerical experiments. Furthermore, the ratio
the breather separations in the cases of the top right pan
Fig. 1, top panels of Fig. 2 and the bottom panel of Fig. 2
1:2:4, while the corresponding~approximate! instability on-
set times have a ratio of 2.5:16:150, clearly hinting an ex
nential dependence of the instability onset onS.

IV. STABILIZATION

While the results of the preceding section indicate t
very long-lived breather lattice configurations can
achieved by appropriate parameter selection, it is natura
enquire whether by mechanisms of ac driving and dampin
is possible to fully stabilize such configurations. We ha
thus examined the following driven-damped MKdV equ
tion:

ut1uxxx16u2ux5buxx1F0sinS p

K~m!
~cx1vt ! D , ~14!

where the ‘‘viscosity’’ coefficient was fixed tob55 while F0
was varied. Note that the periodicity of the driver was chos
to match one of the unperturbed breather lattice configu
tions. For small values ofF0, the viscosity damps the
breather amplitude. However, for sufficiently large drivin
amplitudes~such as the one used in Fig. 3! the driver can
lead to the stabilization of an asymmetric lattice configu
tion. We also note that the ac drive was motivated by ear
studies, e.g., Ref.@22# ~and the references therein!. In addi-
tion, we point out that lattice configurations propagating
the opposite direction can be stabilized if the velocity of t
driver is reversed~results not shown here!.

We note that the value of the viscosity coefficientb55
and the amplitude of the driverF055 used in Fig. 3 to
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stabilize the breather lattice are relatively large. Variation
the value ofb will not significantly modify the results. Tha
is, even for much smaller values ofb the multibreather con-
figuration is destroyed at a finite time and the resulting p
file does not closely resemble the initial condition. Howev
the relaxation time to the final state depends considerably
the exact value of the viscosity coefficient and is longer
smallerb.

V. CONCLUSION

Inspired by the exact breather lattice solution of the si
Gordon equation@15,16# we used an ansatz to find a corr
sponding solution of the modified Korteweg–de Vries equ
tion. We determined the conditions under which the ans
becomes an exact solution of MKdV and showed how
degenerates to the single MKdV breather solution in the
propriate limit. We then used this exact expression to der
additional lattices of nonlinear traveling waves. The MKd
breather lattice is a genuinely propagating solution in c
trast to the sine-Gordon solution, which can be static. O
numerical experiments~by means of a novel numerica
scheme! indicated that the MKdV breather lattice solution
unstable; however, it can be stabilized by inclusion of dam
ing and ac driving. The results presented here may be
evant to numerous physical phenomena such as jammin
traffic flow @7#, fluid dynamics@12#, and collisionless plas-
mas@5#.
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