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Breather lattice and its stabilization for the modified Korteweg—de Vries equation
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We obtain an exact solution for the breather lattice solution of the modified Korteweg—de Vries equation.
Numerical simulation of the breather lattice demonstrates its instability due to the breather-breather interaction.
However, such multibreather structures can be stabilized through the concurrent application of ac driving and
viscous damping terms.
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[. INTRODUCTION entz invariance that permits the breathers to be either stand-
ing or traveling. In the former case, such invariances are

There are many physical systems where thd Imodified  absent and breathers can only be sustained in a traveling
Korteweg—de Vries(MKdV) equation[1,2] appears, e.g.,, wave form. Furthermore, the dissipation-type effects are in-
phonons in anharmonic latticg3], ion acoustic solitonf4], ~ troduced by very different operators in the two cases. Thus,
and van Alfven waves in collisionless plasni&], Schottky for reasons of physical applicability and mathematical trac-
barrier transmission ||ne§] as well as in the models of tab|l|ty, it is very important to |dent|fy similar solutions of
traffic CO”gestior[?]_ A subclass of hyperbo“c surfac&]’ the breather lattice type in models of the KdV fam"y, such as
S|ag_meta”ic bath interfacd:g], curve motion[lo], mean- theMKdV and examine their Stablllty This is the main ob-
dering ocean jetf11], and other models in fluid mechanics jective of the present work.

[12] are also related to the MKdV equation. Furthermore, it Our presentation is structured as follows. In Sec. Il we
has been shown that the dynamics of thin elastic rods caBresent the explicit MKdV breather lattice solution in terms
also be reduced to the MKdV equatift8]. This equation is of elliptic functions, retrieve the well-known single breather
also of special interest due to its integrability in the contextimit and analyze the algebraic and physical conditions for
of nonlinear soliton bearing Syster[ﬂ;'Z]_ From a physica| the existence Of such a solution. In Sec. Il we numerIC.a”y
perspective, it is therefore important to examine nove|StUdy the Stab”lty of the Unperturbed MKdV breather lattice
classes of solutions of such partial differential equations an@nd display its instability. In Sec. IV, we demonstrate that
their potential relevance in this diverse class of applicationsSUch a solution can be stabilized by viscous effects when

A particularly interesting type of solution is the so called combined with appropriate driving to sustain the breathers,
breather lattice solution. Breathers are spatially localized an@nd finally in Sec. V we summarize our findings and present
temporally periodic solutions which are of significant rel- Our conclusions.
evance to localization-type phenomena in optics, condensed
matter physics, and biophysics. For a representative set of [l. BREATHER LATTICE SOLUTION
re_views of the continuously increasing volqme of W.°rk in The modified Korteweg—de Vries equation for a field
this area, see, e.g., Ré¢fl4]. As can be seen in these inves- (x.1)
tigations, typically analytical expressions for breather-type "’
solutions are unavailable and such solutions have to be U+ 6UUy+ Uyyy =0 (1)
traced by means of numerical methods. However, in some
cases and particularly for integrable models, such solutionsan be transformed into
may exist in a closed form. One such example is the breather 5 2
lattice solution of the sine-Gordon equation, which was pre- (14 %) (PrF duxx) T 6Dx( D%~ P bxx) =0, @
sented in explicit analytic form in Ref15]. Such a solution,
albeit unstable, is very important because it can be stabilize
in more realistic contexts of driving and damping. In addi- u=vp,, ¢=tanv/2), andv—0 as|x|—x. (3
tion, it is useful in extracting the asymptotic breather-
breather(exponential interaction by means of energy meth-  The single breather solution of MKdV is known to p¥
ods as demonstrated in REL6].

It is naturally worthwhile to enquire whether similar ex- u(x,t)= —Zi tan !
tended pattern solutions are available in the closed form in X
other models. Of particular interest are models of the MKdV .
(and KdV) variety not only due to an abundance of the cor-W'th
responding applications but also due to the fundamental b=a(a?—3c?), d=c(3a%—c?), (5)
differences of such integrable models with nonlinear Klein-

Gordon equations, such as sine-Gordon. The latter have Loanda,, andc, are arbitrary constants.

\(/J/here

csin(ax+bt+agp)
acoshcx+dt+cy)/’

4

1063-651X/2003/6@}/0477014)/$20.00 68 047701-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B8, 047701 (2003

FIG. 1. (Color) Pictorial repre-
sentation of the exact MKdV
breather lattice solution in a
space-time X,t) contour plot for
c=1, m=0.5(top left panel. The
top right panel shows the time
evolution of the same solution
under the dynamics of Eq.13)
with At=0.0005 andh~0.0927.
These contour plots have dimen-
sionless units fok andt. The bot-
tom panel shows the spatial pro-
files u(x,tp) of the solution for
various timest, before and after
the instability develops.
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Let us now try to obtain the breather lattice solution of theing, it need not have temporal commensurability. Combining
MKdV equation. To that end, we start with the ansatz conditions(8) and (10) yields
with . . .
implying thereby thaim andk are not independent. For ex-
$(x,t)= asn(ax+bt+ag,k)ydn(cx+dt+co,m), (7)  ample, note that as expected with—1, k—0 the breather

o ) ) lattice solution reduces to the single breather solufién
where snk,k) and dnk,m) are Jacobi elliptic functions with  However, asn—0, dnx,m)=1 and then it is easily shown

modulusk andm, respectively. This ansatz is inspired by the that an exactnonlineaj traveling wave solution is given by
derivative relationship between a single breather solution of

the sine-Gordon equation and that of MK{&q. (4)] as well d(x,t)=Vksnax+a}t[1+k—6\k]+ay.k). (12
as by the functional similarity of the sine-Gordon breather

lattice solution[15,16]. Substituting the ansatz) in Eq. (2) Summarizing, since there are four relations among the six

and upon lengthy algebraic manipulations, we find that Eqparameters, b, c,d,k,m, we have obtained a two-parameter

(7) is indeed the MKdV breather lattice solution, provided family of breather lattice solutions. A plot of thexac

that breather lattice of Eq(6) for m=0.5, c=1 is given in the
a*k=c*(1-m), a=-—(cla), (8)  top left panel of Fig. 1.

b=a[a?(1+k)—3c?(2—m)],
1. NUMERICAL METHODS AND EVOLUTION
d=c[3a%(1+k)—(2—m)c?]. ) OF THE BREATHER LATTICE

As expected, in the limitn—1,k—0, the breather lattice Based on the breather lattice simulations for the sine-
solution (7) reduces to the single breather solutigh and ~ Gordon cas¢l6] it may be natural to expect that the MKdV
the relations between and d as well as betweea and b breather lattice configuration is also unstable. In the numeri-
reduce to those given by E6B). cal simulation of the MKdV problem, we have found that the
On physical groundé.e., to have solutions with a definite direct center-difference discretization does a poor job in ad-
spatial periodicity, it is natural to demand that the periods of €duately following the MKdV equatiotand in conserving
the sn&,k) and dng,m) functions must be spatially com- the corr_espondlng integrals of motDerhllg one can also
mensurate, i.e., in addition to conditiof® and(9), we must ~ USe the integrable scheme of Ablowitz-Ladgee, e.g., Refs.

also demand thdtL7] [2,18,19 and references therginwe have followed a differ-
ent path here in spatially discretizing the partial differential
4K (k)/a=2K(m)/c, (10 equation and following the integrable discretization scheme

of Ref. [20] for KdV and adapting it to the case of the
whereK (k) is the complete elliptic integral of the first kind. MKdV. In particular, the spatially discrete version of our
Note, however, that since the MKdV breather is always mov-equation readéwith lattice spacingh)
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_ bottom panel c=0.25 and m
p— ————— M =0.5. In the latter case the snap-
= e — 02 shot of t=150 is also shown to
20— — = - i indicate the onset of the instabil-
—_— — " ity. The contour plots have dimen-
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_ 1 We found that, as can be seen in the top right panel of Fig.
Up=— ﬁ(un+2—2un+1+ 2Up_1—Up_2)— an 1, the numerical discretization pgrturbatiqn grows gnd even-
tually destroys the breather lattice configuration in all the
2 2 i . i
XTUZ, (UnspF Uns 1+ Up) — U2 (Up+ Uy 3+ Un_o)]. cases c_onS|d_ered Various snapshots_, of the solut{ont)
are depicted in the bottom panel of Fig. 1.
(13 To further understand the instability, we performed runs

The time integration has been performed by means of £ different values of the two relevant parameters of the
fourth order Runge-Kutta scheme. We used periodic bound8olution, namelyc andm. Three typical cases are shown in
ary conditions and the initial condition contained an exactig. 2. The particular numerical experiments are chosen to
breather lattice configuration, matching the periodicity of theillustrate the characteristic dependences of the instability. We
finite domain. Hence, the only perturbation to the exact soexpect from the experience of other nonlinear wave equa-
lution came from the numerical discretization of the prob-tions with interacting breather structufsee, e.g., Ref.16]

lem. It should also be noted that in the results mentionedor sine-Gordon and Ref21] for nonlinear Schrdinger type
below, the accuracy of the numerical method was monitorednodels that the instability is caused by the interaction be-
by probing the conservation of two quantities,u, and tween the breathers, which is exponential in their separation.
Enuﬁ, which emulate the discrete analogs of the mass anffrom Eq.(10), the separation between the breathers is given
the momentum, respectively. Typically the former is con-by S=2K(m)/c. The top panels of Fig. 2 correspond to two
served(at wors} to 1 part in 18, while the latter to 1 partin cases with differentc and m but with the sameS=S.

10°. Clearly the instability develops at very similar times and
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FIG. 3. (Color) The driven-damped MKdV stabilization of the breather lattice withl, m=0.5, B=F,=5. The left panel shows the
space-time contour plot. The right panel top subplot shows a detail of the left plot to indicate the stabilization of the configuration. These
contour plots have dimensionless unitsX¥andt. The bottom left subplot shows the spatial profile of the solutidr-a&80, while the bottom
right subplot depicts the relaxational time evolution of a global property such as the discrete analog of the continuum momentum.

u(x,60)
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verifies the dependence of the growth rate on the interstabilize the breather lattice are relatively large. Variation of
breather separatio®,. The bottom panel shows a case with the value of will not significantly modify the results. That
S=2S,. Note that these typical results have been verified byis, even for much smaller values gfthe multibreather con-
additional numerical experiments. Furthermore, the ratio ofiguration is destroyed at a finite time and the resulting pro-
the breather separations in the cases of the top right panel §ife does not closely resemble the initial condition. However,
Fig. 1, top panels of Fig. 2 and the bottom panel of Fig. 2, isthe relaxation time to the final state depends considerably on
1:2:4, while the correspondin@pproximatg instability on-  the exact value of the viscosity coefficient and is longer for
set times have a ratio of 2.5:16:150, clearly hinting an exposmallerg.

nential dependence of the instability onset®n

IV. STABILIZATION V. CONCLUSION

. . S Inspired by the exact breather lattice solution of the sine-
While th? results of the pre_cedmg section indicate thatGordopn equgtiomls 16 we used an ansatz to find a corre-
very long-lived bregther lattice conflggrathn§ can besponding solution of the modified Korteweg—de Vries equa-
achle_ved by appropriate parameter sele_ct_lon, Itis natu_ral t lon. We determined the conditions under which the ansatz
enquire whether by mechanisms of ac driving and damping i ecomes an exact solution of MKdV and showed how it
degenerates to the single MKdV breather solution in the ap-

is possible to fully stabilize such configurations. We have
thus examined the following driven-damped MKdv €aUa Hropriate limit. We then used this exact expression to derive

tion: additional lattices of nonlinear traveling waves. The MKdV
. ™ breather lattice is a genuinely propagating solution in con-
Urt Usooct BUU= Bl FOSIn(K(m) (exto) |, (14 trast to the sine-Gordon solution, which can be static. Our

] ) o i . numerical experimentgby means of a novel numerical
where the “viscosity” coefficient was fixed t6=5 whileFo  schemgindicated that the MKdV breather lattice solution is
was varied. Note that the periodicity of the driver was chosennstable; however, it can be stabilized by inclusion of damp-
to match one of the unperturbed breather lattice conflgura'mg and ac driving. The results presented here may be rel-
tions. For small values of,, the viscosity damps the evant to numerous physical phenomena such as jamming in

breather amplitude. However, for sufficiently large driving traffic flow [7], fluid dynamics[12], and collisionless plas-
amplitudes(such as the one used in Fig) Bie driver can  mas[5].

lead to the stabilization of an asymmetric lattice configura-

tion. We also note that the ac drive was motivated by earlier

studies, e.g., Ref22] (and the references thergiin addi- ACKNOWLEDGMENTS
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